Mo $K\alpha$ radiation

 $\mu = 1.34 \text{ mm}^{-1}$

T = 298 (2) K $0.40 \times 0.37 \times 0.32 \text{ mm}$

Z = 1

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

µ-Biphenyl-4,4'-dicarboxylato-bis{[2-(piperidin-1-yl)ethanamine]silver(I)} dihydrate

Chun-Lan Yuan

Department of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721007, People's Republic of China Correspondence e-mail: chunlanyuan@163.com

Received 25 October 2007; accepted 20 November 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.036; wR factor = 0.078; data-to-parameter ratio = 17.5.

The title complex, $[Ag_2(C_{14}H_8O_4)(C_7H_{16}N_2)_2]\cdot 2H_2O$, consists of a biphenyl-4,4'-dicarboxylate-bridged centrosymmetric dinuclear silver(I) complex and two uncoordinated water molecules. The Ag atom is three-coordinated by two N atoms of 2-(piperidin-1-yl)ethanamine and one O atom of biphenyl-4,4'-dicarboxylate, forming a distorted T-shaped coordination environment, the distortion being caused by the strain created by the five-membered chelate Ag-N-C-C-N ring. In the crystal structure, molecules are linked through intermolecular $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds, forming layers parallel to the *bc* plane.

Related literature

For related literature, see: Kristiansson (2001); Melcer *et al.* (2001); Nomiya *et al.* (2000); Schultheiss *et al.* (2003); Smith *et al.* (1996); Wang & Mak (2003); Wei *et al.* (1998).

Experimental

Crystal data

 $[\mathrm{Ag}_{2}(\mathrm{C}_{14}\mathrm{H}_{8}\mathrm{O}_{4})(\mathrm{C}_{7}\mathrm{H}_{16}\mathrm{N}_{2})_{2}]\cdot 2\mathrm{H}_{2}\mathrm{O}$ $M_{r}=748.41$ Triclinic, $P\overline{1}$ a = 7.2410 (14) Å

b = 8.3920(17)Å
c = 13.154 (3) Å
$\alpha = 82.95 \ (3)^{\circ}$
$\beta = 76.61 \ (3)^{\circ}$
$\gamma = 77.34 \ (3)^{\circ}$
V = 756.5 (3) Å ³

Data collection

Bruker SMART CCD area-detector	6271 measured reflections
diffractometer	3279 independent reflections
Absorption correction: multi-scan	2614 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.024$
$T_{\min} = 0.616, \ T_{\max} = 0.674$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	H atoms treated by a mixture of
$wR(F^2) = 0.078$	independent and constrained
S = 1.06	refinement
3279 reflections	$\Delta \rho_{\rm max} = 0.44 \ {\rm e} \ {\rm \AA}^{-3}$
187 parameters	$\Delta \rho_{\rm min} = -0.39 \text{ e} \text{ Å}^{-3}$
3 restraints	

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2A\cdots O2^{i}$	0.90	2.24	3.134 (4)	175
$N2-H2B\cdots O2^{ii}$	0.90	2.13	2.994 (4)	161
$O3-H3A\cdots O2$	0.84(3)	2.38 (2)	3.174 (4)	156 (4)
$O3-H3B\cdots O2^{ii}$	0.85 (3)	2.02 (3)	2.867 (4)	175 (4)

Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y + 1, -z.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *SHELXTL*.

The author is grateful for financial support from the Natural Science Foundation (grant No. 2002B22) of Shaanxi Province and the Main Project (No. 04JS37) of the Key Laboratory of Shaanxi Province, People's Republic of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2330).

References

- Bruker (1998). SMART (Version 5.628), SAINT (Version 6.02) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Kristiansson, O. (2001). Inorg. Chem. 40, 5058-5059.
- Melcer, N. J., Enright, G. D., Ripmeester, J. A. & Shimizu, G. K. H. (2001). *Inorg. Chem.* 40, 4641–4648.
- Nomiya, K., Takahashi, S., Noguchi, R., Nemoto, S., Takayama, T. & Oda, M. (2000). *Inorg. Chem.* **39**, 3301–3311.
- Schultheiss, N., Powell, D. R. & Bosch, E. (2003). *Inorg. Chem.* 42, 5304–5310. Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany.
- Sheldrick, G. M. (1990). SADADS. University of Cottingen, Germany.
 Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Smith, G., Lynch, D. E. & Kennard, C. H. L. (1996). *Inorg. Chem.* **35**, 2711– 2712
- Wang, Q.-M. & Mak, T. C. W. (2003). Inorg. Chem. 42, 1637–1643.
- Wei, P., Mak, T. C. W. & Atwood, D. A. (1998). Inorg. Chem. 37, 2605-2607.

supplementary materials

Acta Cryst. (2007). E63, m3147 [doi:10.1107/S160053680706103X]

µ-Biphenyl-4,4'-dicarboxylato-bis{[2-(piperidin-1-yl)ethanamine]silver(I)} dihydrate

C.-L. Yuan

Comment

The structural characterization of silver(I) complexes with carboxylate anions as counter-ions or ligands has attracted much interest in the last few years (Smith *et al.*, 1996; Wei *et al.*, 1998; Nomiya *et al.*, 2000; Kristiansson, 2001). As a further investigation of such silver(I) complexes, in this paper, a new silver(I) complex is reported.

The title complex consists of a biphenyl-4,4'-dicarboxylate bridged dinuclear silver(I) complex and two lattice water molecules. The Ag atom is three-coordinated by two N atoms of 2-piperidin-1-ylethylamine and one O atom of biphenyl-4,4'-dicarboxylate, forming a distorted T-shaped coordination environment (Fig. 1). The distortion of the T-shaped coordination is caused by the strain created by the five-membered chelate ring Ag1—N1—C9—C8—N2. All the coordination bond values (Table 1) are within normal ranges and comparable to the similar silver(I) complexes (Melcer *et al.*, 2001; Wang & Mak, 2003; Schultheiss *et al.*, 2003).

In the crystal, the lattice water molecules are linked to the silver(I) complex units through intermolecular hydrogen bonds O3–H3B···O2 and intramolecular hydrogen bonds O3–H3A···O2 (Table 2). The adjacent molecules are further linked through intermolecular hydrogen bonds N2–H2A···O2 and N2–H2B···O2, forming layers parallel to the *bc* plane (Fig. 2).

Experimental

Ag₂O (0.2 mmol, 46.3 mg) and biphenyl-4,4'-dicarboxylic acid (0.1 mmol, 24.2 mg) were dissolved in an ammonia solution (15 ml, 30%), and the mixture was stirred for 30 min at room temperature. To the above mixture was added with stirring a methanol solution (5 ml) of 2-piperidin-1-ylethylamine (0.2 mmol, 25.6 mg). The final mixture was further stirred for 30 min at room temperature. The resulting clear colorless solution was kept in dark for a week, yielding block-shaped colorless crystals. Analysis found: C 44.73, H 6.02, N 7.32%; calculated for $C_{28}H_{44}Ag_2N_4O_6$: C 44.94, H 5.93, N 7.49%. A broad absorption at 3412 cm⁻¹ in the infrared spectrum is consistent with the presence of solvated water molecules.

Refinement

H3A and H3B were located from a difference Fourier map and refined isotropically, with O–H distances restrained to 0.85 (1) Å, H…H distance restrained to 1.37 (2) Å. Other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C–H distances in the range 0.93–0.97 Å, N–H distances of 0.90 Å, and with $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Figures

Fig. 1. The structure of the complex at the 30% probability level for non hydrogen atoms.

Fig. 2. Molecular packing of the complex.

μ-Biphenyl-4,4'-dicarboxylato-bis{[2-(piperidin-1-yl)ethanamine]silver(I)} dihydrate

Crystal data	
$[Ag_2(C_{14}H_8O_4)(C_7H_{16}N_2)_2] \cdot 2H_2O$	Z = 1
$M_r = 748.41$	$F_{000} = 382$
Triclinic, PT	$D_{\rm x} = 1.643 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 7.2410 (14) Å	Cell parameters from 2907 reflections
b = 8.3920 (17) Å	$\theta = 2.4 - 27.3^{\circ}$
c = 13.154 (3) Å	$\mu = 1.34 \text{ mm}^{-1}$
$\alpha = 82.95 \ (3)^{\circ}$	T = 298 (2) K
$\beta = 76.61 \ (3)^{\circ}$	Block, colorless
$\gamma = 77.34 \ (3)^{\circ}$	$0.40\times0.37\times0.32~\text{mm}$
V = 756.5 (3) Å ³	

Data collection

Bruker SMART CCD area-detector diffractometer	3279 independent reflections
Radiation source: fine-focus sealed tube	2614 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.024$
T = 298(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 1.6^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 9$
$T_{\min} = 0.616, \ T_{\max} = 0.674$	$k = -10 \rightarrow 10$
6271 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.036$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.078$	$w = 1/[\sigma^2(F_0^2) + (0.0338P)^2 + 0.0748P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{max} < 0.001$

3279 reflections187 parameters

 $\Delta \rho_{\text{max}} = 0.44 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.39 \text{ e } \text{\AA}^{-3}$

3 restraints

Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ag1	0.28889 (4)	0.34687 (3)	0.17052 (2)	0.05437 (12)
01	0.4604 (3)	0.4290 (3)	0.26075 (17)	0.0610 (7)
O2	0.6870 (3)	0.5045 (3)	0.13123 (16)	0.0549 (6)
O3	0.3545 (6)	0.7009 (4)	0.0175 (3)	0.1041 (12)
N1	0.2171 (4)	0.0674 (3)	0.2252 (2)	0.0432 (6)
N2	0.1136 (4)	0.3156 (3)	0.0587 (2)	0.0477 (7)
H2A	-0.0067	0.3758	0.0766	0.057*
H2B	0.1673	0.3523	-0.0063	0.057*
C1	0.7356 (4)	0.4784 (3)	0.3058 (2)	0.0346 (6)
C2	0.8925 (4)	0.5553 (4)	0.2824 (2)	0.0394 (7)
H2	0.9298	0.6021	0.2149	0.047*
C3	0.9949 (4)	0.5637 (4)	0.3576 (2)	0.0411 (7)
Н3	1.0996	0.6164	0.3396	0.049*
C4	0.9457 (4)	0.4958 (3)	0.4590 (2)	0.0358 (7)
C5	0.7885 (5)	0.4175 (5)	0.4813 (2)	0.0590 (10)
H5	0.7515	0.3695	0.5484	0.071*
C6	0.6863 (5)	0.4095 (5)	0.4064 (2)	0.0553 (9)
H6	0.5818	0.3564	0.4241	0.066*
C7	0.6205 (4)	0.4702 (4)	0.2251 (2)	0.0376 (7)
C8	0.1025 (6)	0.1431 (4)	0.0589 (3)	0.0595 (10)
H8A	0.2230	0.0846	0.0190	0.071*
H8B	-0.0011	0.1357	0.0254	0.071*
С9	0.0657 (5)	0.0650 (4)	0.1690 (3)	0.0591 (10)
H9A	-0.0572	0.1220	0.2075	0.071*
H9B	0.0552	-0.0477	0.1667	0.071*
C10	0.3912 (6)	-0.0542 (5)	0.1904 (3)	0.0592 (9)
H10A	0.4331	-0.0396	0.1148	0.071*

supplementary materials

H10B	0.3630	-0.1633	0.2080	0.071*
C11	0.5512 (6)	-0.0368 (5)	0.2422 (3)	0.0723 (12)
H11A	0.6654	-0.1194	0.2192	0.087*
H11B	0.5845	0.0700	0.2209	0.087*
C12	0.4900 (7)	-0.0554 (6)	0.3597 (4)	0.0893 (15)
H12A	0.5885	-0.0313	0.3912	0.107*
H12B	0.4760	-0.1674	0.3821	0.107*
C13	0.2999 (7)	0.0599 (6)	0.3957 (3)	0.0850 (14)
H13A	0.2542	0.0372	0.4703	0.102*
H13B	0.3205	0.1716	0.3842	0.102*
C14	0.1473 (6)	0.0441 (5)	0.3391 (3)	0.0666 (11)
H14A	0.1148	-0.0635	0.3569	0.080*
H14B	0.0310	0.1254	0.3610	0.080*
H3A	0.413 (6)	0.643 (4)	0.062 (2)	0.080*
H3B	0.335 (6)	0.640 (4)	-0.024 (2)	0.080*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Ag1	0.0592 (2)	0.06183 (18)	0.05765 (18)	-0.02704 (14)	-0.03305 (15)	0.00279 (12)
01	0.0478 (15)	0.106 (2)	0.0438 (13)	-0.0359 (14)	-0.0163 (12)	-0.0092 (13)
O2	0.0590 (16)	0.0863 (17)	0.0314 (12)	-0.0338 (13)	-0.0173 (11)	0.0001 (11)
O3	0.129 (3)	0.093 (2)	0.107 (3)	0.009 (2)	-0.069 (2)	-0.040 (2)
N1	0.0429 (16)	0.0449 (14)	0.0444 (15)	-0.0102 (13)	-0.0132 (13)	-0.0027 (12)
N2	0.0488 (17)	0.0587 (17)	0.0404 (14)	-0.0154 (14)	-0.0180 (13)	0.0033 (12)
C1	0.0347 (17)	0.0418 (16)	0.0311 (14)	-0.0075 (13)	-0.0121 (13)	-0.0068 (12)
C2	0.0435 (19)	0.0506 (18)	0.0279 (14)	-0.0148 (15)	-0.0113 (13)	-0.0006 (13)
C3	0.0407 (19)	0.0540 (18)	0.0365 (16)	-0.0203 (15)	-0.0144 (14)	-0.0019 (14)
C4	0.0384 (18)	0.0431 (16)	0.0307 (15)	-0.0115 (14)	-0.0120 (13)	-0.0059 (12)
C5	0.067 (2)	0.093 (3)	0.0335 (16)	-0.049 (2)	-0.0215 (17)	0.0124 (17)
C6	0.055 (2)	0.085 (3)	0.0417 (18)	-0.042 (2)	-0.0203 (17)	0.0043 (17)
C7	0.0371 (18)	0.0427 (16)	0.0382 (16)	-0.0074 (14)	-0.0158 (14)	-0.0084 (13)
C8	0.068 (3)	0.062 (2)	0.063 (2)	-0.0134 (19)	-0.035 (2)	-0.0128 (18)
C9	0.055 (2)	0.051 (2)	0.082 (3)	-0.0179 (17)	-0.029 (2)	-0.0004 (18)
C10	0.060 (3)	0.059 (2)	0.056 (2)	-0.0015 (19)	-0.0151 (19)	-0.0090 (17)
C11	0.049 (2)	0.080 (3)	0.087 (3)	0.000 (2)	-0.029 (2)	0.006 (2)
C12	0.087 (4)	0.107 (4)	0.080 (3)	-0.017 (3)	-0.049 (3)	0.024 (3)
C13	0.102 (4)	0.113 (4)	0.044 (2)	-0.025 (3)	-0.024 (2)	0.004 (2)
C14	0.063 (3)	0.075 (3)	0.051 (2)	-0.011 (2)	-0.002 (2)	0.0107 (19)

Geometric parameters (Å, °)

Ag1—O1	2.164 (2)	C5—C6	1.378 (4)
Ag1—N2	2.225 (2)	С5—Н5	0.9300
Ag1—N1	2.497 (3)	С6—Н6	0.9300
O1—C7	1.252 (4)	C8—C9	1.504 (5)
O2—C7	1.240 (4)	С8—Н8А	0.9700
O3—H3A	0.84 (3)	C8—H8B	0.9700
O3—H3B	0.85 (3)	С9—Н9А	0.9700

N1—C10	1.457 (5)	С9—Н9В	0.9700
N1—C9	1.462 (4)	C10—C11	1.514 (5)
N1—C14	1.469 (4)	C10—H10A	0.9700
N2—C8	1.468 (4)	C10—H10B	0.9700
N2—H2A	0.9000	C11—C12	1.505 (6)
N2—H2B	0.9000	C11—H11A	0.9700
C1—C6	1.376 (4)	C11—H11B	0.9700
C1—C2	1.383 (4)	C12—C13	1.510(7)
C1—C7	1.510 (4)	C12—H12A	0.9700
C2—C3	1.384 (4)	C12—H12B	0.9700
С2—Н2	0.9300	C13—C14	1.505 (6)
C3—C4	1.383 (4)	C13—H13A	0.9700
С3—Н3	0.9300	C13—H13B	0.9700
C4—C5	1.393 (4)	C14—H14A	0.9700
C4—C4 ⁱ	1.490 (5)	C14—H14B	0.9700
O1—Ag1—N2	167.47 (10)	С9—С8—Н8А	109.5
O1—Ag1—N1	115.68 (9)	N2—C8—H8B	109.5
N2—Ag1—N1	76.85 (9)	С9—С8—Н8В	109.5
C7—O1—Ag1	125.81 (19)	H8A—C8—H8B	108.1
H3A—O3—H3B	110 (2)	N1—C9—C8	113.4 (3)
C10—N1—C9	111.7 (3)	N1—C9—H9A	108.9
C10—N1—C14	110.6 (3)	С8—С9—Н9А	108.9
C9—N1—C14	111.3 (3)	N1—C9—H9B	108.9
C10—N1—Ag1	109.0 (2)	С8—С9—Н9В	108.9
C9—N1—Ag1	102.13 (18)	Н9А—С9—Н9В	107.7
C14—N1—Ag1	111.9 (2)	N1-C10-C11	110.2 (3)
C8—N2—Ag1	111.07 (19)	N1-C10-H10A	109.6
C8—N2—H2A	109.4	C11-C10-H10A	109.6
Ag1—N2—H2A	109.4	N1-C10-H10B	109.6
C8—N2—H2B	109.4	C11-C10-H10B	109.6
Ag1—N2—H2B	109.4	H10A—C10—H10B	108.1
H2A—N2—H2B	108.0	C12-C11-C10	111.2 (4)
C6—C1—C2	117.6 (2)	C12—C11—H11A	109.4
C6—C1—C7	120.6 (3)	C10-C11-H11A	109.4
C2—C1—C7	121.8 (2)	C12—C11—H11B	109.4
C1—C2—C3	121.1 (3)	C10-C11-H11B	109.4
C1—C2—H2	119.5	H11A—C11—H11B	108.0
С3—С2—Н2	119.5	C11—C12—C13	110.0 (3)
C4—C3—C2	121.8 (3)	C11—C12—H12A	109.7
С4—С3—Н3	119.1	C13—C12—H12A	109.7
С2—С3—Н3	119.1	C11—C12—H12B	109.7
C3—C4—C5	116.5 (2)	C13—C12—H12B	109.7
C3—C4—C4 ⁱ	122.4 (3)	H12A—C12—H12B	108.2
C5-C4-C4 ⁱ	121.1 (3)	C14—C13—C12	112.4 (4)
C6—C5—C4	121.7 (3)	C14—C13—H13A	109.1
С6—С5—Н5	119.2	C12—C13—H13A	109.1
С4—С5—Н5	119.2	C14—C13—H13B	109.1
C1—C6—C5	121.3 (3)	С12—С13—Н13В	109.1

supplementary materials

С1—С6—Н6	119.3	H13A—C13—H13B	107.9
С5—С6—Н6	119.3	N1-C14-C13	110.4 (3)
O2—C7—O1	125.1 (3)	N1—C14—H14A	109.6
O2—C7—C1	119.5 (3)	C13—C14—H14A	109.6
O1—C7—C1	115.3 (3)	N1-C14-H14B	109.6
N2—C8—C9	110.8 (3)	C13—C14—H14B	109.6
N2—C8—H8A	109.5	H14A—C14—H14B	108.1

Symmetry codes: (i) -x+2, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
N2—H2A····O2 ⁱⁱ	0.90	2.24	3.134 (4)	175
N2—H2B···O2 ⁱⁱⁱ	0.90	2.13	2.994 (4)	161
O3—H3A…O2	0.84 (3)	2.38 (2)	3.174 (4)	156 (4)
O3—H3B···O2 ⁱⁱⁱ	0.85 (3)	2.02 (3)	2.867 (4)	175 (4)
Symmetry codes: (ii) $x-1$, y , z ; (iii) $-x+1$, $-y+1$, $-z$.				

Fig. 1

